Molecular physiology of renal organic anion transporters.

نویسندگان

  • Takashi Sekine
  • Hiroki Miyazaki
  • Hitoshi Endou
چکیده

Recent advances in molecular biology have identified three organic anion transporter families: the organic anion transporter (OAT) family encoded by SLC22A, the organic anion transporting peptide (OATP) family encoded by SLC21A (SLCO), and the multidrug resistance-associated protein (MRP) family encoded by ABCC. These families play critical roles in the transepithelial transport of organic anions in the kidneys as well as in other tissues such as the liver and brain. Among these families, the OAT family plays the central role in renal organic anion transport. Knowledge of these three families at the molecular level, such as substrate selectivity, tissue distribution, and gene localization, is rapidly increasing. In this review, we will give an overview of molecular information on renal organic anion transporters and describe recent topics such as the regulatory mechanisms and molecular physiology of urate transport. We will also discuss the physiological roles of each organic anion transporter in the light of the transepithelial transport of organic anions in the kidneys.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular pharmacology of renal organic anion transporters.

Renal organic anion transport systems play an important role in the elimination of drugs, toxic compounds, and their metabolites, many of which are potentially harmful to the body. The renal proximal tubule is the primary site of carrier-mediated transport from blood to urine of a wide variety of anionic substrates. Recent studies have shown that organic anion secretion in renal proximal tubule...

متن کامل

Structure of renal organic anion and cation transporters.

Here we review the structural and functional properties of organic anion transporters (OAT1, OAT2, OAT3) and organic cation transporters (OCTN1, OCTN2, OCT1, OCT2, OCT3), some of which are involved in renal proximal tubular organic anion and cation secretion. These transporters share a predicted 12-transmembrane domain (TMD) structure with a large extracellular loop between TMD1 and TMD2, carry...

متن کامل

Transport of cimetidine by flounder and human renal organic anion transporter 1.

The H(2)-receptor antagonist cimetidine is efficiently excreted by the kidneys. In vivo studies indicated an interaction of cimetidine not only with transporters for basolateral uptake of organic cations but also with those involved in excretion of organic anions. We therefore tested cimetidine as a possible substrate of the organic anion transporters cloned from winter flounder (fROAT) and fro...

متن کامل

Renal tubular drug transporters.

The kidney plays an important role in the elimination of numerous hydrophilic xenobiotics, including drugs, toxins, and endogenous compounds. It has developed high-capacity transport systems to prevent urinary loss of filtered nutrients, as well as electrolytes, and simultaneously to facilitate tubular secretion of a wide range of organic ions. Transport systems for organic anions and cations a...

متن کامل

Cl- -dependent upregulation of human organic anion transporters: different effects on transport kinetics between hOAT1 and hOAT3.

Chloride ion has a stimulatory effect on the transport of organic anions across renal basolateral membranes. However, the exact mechanisms at molecular levels have been unclear as of yet. Human organic anion transporters hOAT1 and hOAT3 play important roles in renal basolateral membranes. In this study, the effects of Cl(-) on the activities of these transporters were evaluated by using HEK293 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 290 2  شماره 

صفحات  -

تاریخ انتشار 2006